Modern Type Theories and Linguistic Semantics

Zhaohui Luo Royal Holloway University of London

This talk – two parts

- I. Modern Type Theories: brief introduction
 - * Historical development, basics, meta-theory, ...
 - Applications (formalisation, verification and semantics)
- II. MTTs applied to linguistic semantics
 - Several issues with examples
 - Rich typing, propositions-as-types, signatures and proofs

Studying type theory and MTT-semantics, I've collaborated with many, only mentioning a few (not all!):

- Adams, Callaghan, Goguen, Pollack (type theory & proof assistants)
- Soloviev, Xue and Y. Luo (coercive subtyping)
- Chatzikyriakidis (MTT-semantics), Asher (linguistic coercions), Lungu (signatures), Maclean (subtype univ) and Shi (adjectives in Chinese)

2

Part I. Modern Type Theories

Historical development of type theory

Russell's ramified type theory (1925)

- Paradoxes in naïve set theory
- Zermelo: axiomatic set theory
- Russell: ramified type theory ("axiom of reducibility")
- * Ramsey (1926)
 - Logical v.s. semantic paradoxes
 - Impredicativity is circular, but not vicious.
- Church's simple type theory (1940)
 - * Formal system based on λ -calculus
 - ♦ Higher-order logic with simple types (e, t, e→t, ...)

Modern Type Theories

Martin-Löf has introduced/employed

- Dependent/inductive types, type universes
- Judgements with contexts, definitional equality
- ✤ Curry-Howard principle of propositions-as-types
- Dependent types: "types segmented by indexes"
 - * List \rightarrow Vect(n) with n:Nat (lists of length n)

Examples of MTTs:

- ✤ Predicative TTs:
 - Martin-Löf's intensional type theory MLTT [1973, …]
 - (non-standard FOL strong sum Σ as existential quantifier; Agda)
- Impredicative TTs (cf, Christian's talk on F, "smallest" impr type sys):
 - ✤ CC [Coquand & Huet 1988] and CIC_p (HOL; Coq/Lean)
 - ✤ UTT [Luo 1990, 1994] (HOL; Lego/Plastic)

5

Data types: N, Π, Σ, \dots $Type_0, Type_1, \dots$ Logic: $\forall, Prop$

Fig. 1. The type structure in UTT.

 $a \rightarrow^* v$ $v \cdot A$ values $v \cdot$

a:A

types

Example: A = Nat, a = 3+4, v = 7. (c.f., verificationistic meaning theory)

UTT [Luo 90,94] has nice meta-theoretic properties

Goguen's PhD thesis on "Typed Operational Semantics" (1994)

objects

Strong normalisation, which implies, e.g., logical consistency.

Π -types and \forall -props: examples of dependent types

 $\Gamma \vdash A \ type \quad \Gamma, \ x:A \vdash B \ type$ \therefore $\Pi x: A.B(x)$ is the collection of functions $\Gamma \vdash \Pi x: A.B \ type$ "from A to B" such that ...: $\Gamma, x:A \vdash b:B$ $\overline{\Gamma} \vdash \lambda x : A \cdot b : \Pi x : A \cdot B$ $\{ f \in A \rightarrow \bigcup_{a \in A} B(a) \mid \forall a \in A. f(a) \in B(a) \}$ $\Gamma \vdash f : \Pi x : A . B \quad \Gamma \vdash a : A$ Similarly, universal quantification: $\Gamma \vdash f(a) : [a/x]B$ $\Gamma \vdash A \ type \quad \Gamma, \ x:A \vdash P : Prop$ $\Gamma, x:A \vdash b: B \quad \Gamma \vdash a: A$ $\Gamma \vdash \forall x: A.B : Prop$ $\Gamma \vdash (\lambda x : A.b)(a) = [a/x]b : [a/x]B$ Note: Prop is a type, an "impredicative universe" – formation of propositions is "circular" (e.g., $\forall X$: Prop.X : Prop) Π -polymorphism (example of uses): small : $\Pi A:CN. (A \rightarrow Prop)$ small(Elephant) : Elephant \rightarrow Prop small(Mouse) : Mouse \rightarrow Prop

Type theory based proof technology

Proof assistants based on type theories

- MTT-based: ALF/Agda, Coq, Lean, Lego, NuPRL, Plastic, ...
- * HOL-based: Isabelle, HOL, ...

Applications of proof assistants

Math: formalisation of mathematics

The Kepler conjecture

First proposed by Johannes Kepler in 1611, it states that the most efficient way to stack cannonballs or equalsized spheres is in a pyramid. A University of Pittsburgh mathematician has proven the 400-year-old conjecture.

Source: Thomas C. Hales Post Gazette

- ✤ 4-colour theorem (Coq), Kepler conjecture (Isabelle)
- Homotopy type theory [HoTT 2013] (Coq/Agda)
- * Computer Science:
 - program verification and advanced programming
 - Coq applied to verifications [Pierce et al. 2018]
- Computational Linguistics
 - NL reasoning based on MTT-sem (Coq) [Chatzikyriakidis-Luo 2016]

Part II. MTTs in Linguistic Semantics

Type-Theoretical Semantics

Montague Semantics (Montague 1930–1971)

- ✤ Dominating in linguistic semantics since 1970s
- * Set-theoretic, using simple type theory as intermediate
- Research on rich typing in NL semantics
 - * Ranta (MLTT), Bekki (subsystem of MLTT), Retoré (system F), ...
 - * Rich typing (type dependency etc.): Asher, Cooper, Grudzińska, ...
- MTT-semantics: formal semantics in modern type theories
 - ✤ Ranta (1994): formal semantics in Martin-Löf's type theory
 - ✤ Luo (2009). Type-Theoretical Semantics with Coercive Subtyping. SALT20.
 - Chatzikyriakidis and Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE, 2020.
 - Luo. Modern Type Theories: Their Development and Applications. Tsinghua University Press. (In Chinese; to appear)

Workshop on Type-Theoretical Semantics

10

Some features/work in MTT-semantics

Copredication

- * Example: The lunch was delicious but took forever.
- * Linguistic phenomenon studied by many (Pustejovsky, Asher, Cooper, Retoré, ...)
- * Dot-types in MTTs [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2018]
- ✤ C.f. talk by Wang later.
- Linguistic coercions via coercive subtyping [Asher & Luo (S&B12)]
- Dependent event types [Luo & Soloviev (WoLLIC17)]
- Propositional forms of judgements [Xue et al (NLCS18)]
- MTT-sem in MLTT_h (MLTT+HoTT's logic) [Luo (LACompLing18)]
- Subtype universes [Maclean & Luo 2021]

Today, we shall consider several (other) issues in MTT-semantics.

Rich typing (1): adjectival modification

CNs as types [Mönnich 1985, Sundholme 1986, Ranta 1994]
 Adjectival modification

* [Chatzikyriakidis & Luo 2013,17,20; Luo, Shi & Xue 2022]

Classical classification	Example	Characterisation	MTT-semantics
intersective	black cat	Adj(N) → N & Adj	∑x:Cat.black(x)
subsective	small elephant	Adj(N) → N	small : ⊓A:CN. A→Prop
privative	fake gun	Adj(N) → ¬N	Σ x:G.fake(G,x) with G=G _R +G _F
non-committal	alleged criminal	Adj(N) → nothing	H _{h,Adj} : Prop→Prop

Rich typing (2): subtyping

Simple example for subtyping

A human talks. Paul is a handsome man. Does Paul talk?

- Yes, because paul : Σ (Man,handsome) \leq Man \leq Human.
- → Subtyping is crucial for MTT-semantics.

Coercive subtyping

Developed for general applications of MTTs (proof dev etc.)
 [Luo 1996, Luo, Soloviev & Xue 2012, Xue 2013, Lungu & Luo 2018]
 Note: Traditional subtyping is inadequate for MTTs (eg, canonicity fails)

c.f., Tao's talk in the first session

Useful mechanism for basic/advanced modelling in MTT-sem

Subtype universes [Maclean & Luo 2021]

Propositions as types

Principle of propositions as types (PaT)

- ↔ P true ←→ p : P for some p
- Also called "Curry-Howard correspondence":
 - Curry & Feys (1958) for propositional logic
 - Howard (1969) for first-order logic

Decidability – necessary for PaT logic

- * "P true" v.s. "p : P": the latter has p (proof candidate).
 - "P true" is undecidable. (Intuitively, infinitely many proof candidates.)
 - * "p : P" should be decidable. (Our systems are finitely-presented.)
- ✤ Type checking in MTTs is decidable.
 - ✤ Eg, UTT is decidable [Goguen 1994]: strong normalisation → decidability
 - Counter-example: Martin-Löf's <u>extensional</u> TT [ML84] is undecidable.

Signatures: mechanism to assume constants

Signatures in type theory

- Edinburgh Logical Framework [Harper, Honsell & Plotkin 1993]
- Adding signatures with membership entries:

 $\Gamma \vdash a : A \rightarrow \Gamma \vdash_{\Delta} a : A$

where $\Delta = c_1 : A_1, ..., c_n : A_n$ (c_i being <u>constants</u>, not variables).

- ✤ Signatures in MTT-semantics [Luo 2014]
 - In semantics, (partial) "possible worlds" can be adequately represented as signatures (not contexts in type theory).
 - Subtype entries (A ≤_c B) and manifest/"definitional" entries (c ~ a : A) for semantic modelling.
 - Preservation of nice properties [Lungu & Luo 2018]

Meaning theories and NL reasoning

Theories of meaning

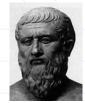
- Meaning is reference ("referential theory")
 - Word meanings are things (abstract/concrete) in the world.
 - c.f., Plato, ...

Meaning is concept ("internalist theory")

- Word meanings are ideas in the mind.
 - c.f., Aristotle, ..., Chomsky.
- ✤ Meaning is use ("use theory")
 - Word meanings are understood by their uses.
 - c.f., Wittgenstein, ..., Dummett, Brandom.

MTT-semantics is proof-theoretic as well as "model-theoretic"

- ✤ MTTs are defined by rules and have use theory of meaning [Martin-Löf 84]
- MTT-semantics implemented in existing proof assistants for NL reasoning. (E.g., application of Coq [Chatzikyriakidis & Luo 2016, 2020])



References (1)

- N. Asher. Lexical Meaning in Context: A Web of Words. Cambridge University Press. 2011.
- N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17, Paris. 2012.
- D. Bekki. Representing anaphora with dependent types. LACL 2014. 2014.
- R. Brandom. Making It Explicit: Reasoning, Representing, and Discursive Commitment. Harvard Univ. Press. 1994.
- S. Chatzikyriakidis and Z. Luo. Adjectives in a Modern Type-Theoretical Setting. The 18th Conf. on Formal Grammar, Dusseldorf. LNCS 8036. 2013.
- S. Chatzikyriakidis and Z. Luo. Proof Assistants for Natural Language Semantics. Logical Aspects of Computational Linguistics 2016 (LACL 2016), Nancy. 2016.
- S. Chatzikyriakidis and Z. Luo. Adjectival and Adverbial Modification: The View from Modern Type Theories. Journal of Logic, Language and Information 26(1), 2017.
- S. Chatzikyriakidis and Z. Luo. Identity Criteria of Common Nouns and Dot-Types for Copredication. Oslo Studies in Language, 10(2). 2018.
- S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE. 2020.

References (2)

- ✤ A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(1). 1940.
- The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.3). INRIA, 2010.
- T. Coquand & G. Huet. The calculus of constructions. Information and Computatio 76(2/3).
 1988.
- ✤ H. Curry and R. Feys. Combinatory Logic, Vol 1. North Holland, 1958.
- M. Dummett. The Logical Basis of Metaphysics. Harvard University Press, 1991.
- M. Dummett. The Seas of Language. OUP, 1993.
- H. Goguen. A Typed Operational Semantics of Type Theory. PhD thesis, Univ of Edinburgh. 1994.
- ✤ R. Harper, R. Honsell & G. Plotkin. A framework for defining logics. J of ACM, 40(1). 1993.
- HoTT. Homotopy Type Theory: Univalent foundations of mathematics. Institute for Advanced Study. 2013.
- W. Howard. The formulae-as-types notion of construction. In To HB Curry: Essays on Combinatory Logic (1980). 1969.
- G. Lungu. Subtyping in Signatures. PhD thesis, Royal Holloway, Univ. of London. 2018.
- G. Lungu and Z. Luo. On subtyping in type theories with canonical objects. TYPES16 postproceedings. 2018.

References (3)

- ✤ Z. Luo. An Extended Calculus of Constructions. PhD thesis, Univ of Edinburgh. 1990.
- ✤ Z. Luo. Coercive subtyping in type theory. CSL'96, LNCS 1258. 1996.
- Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.
- ✤ Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.
- ✤ Z. Luo. Type-theoretical semantics with coercive subtyping. SALT20. 2009.
- Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping. Linguistics and Philosophy, 35(6). 2012.
- Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-theoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics 2014 (LACL 2014). LNCS 8535, p177-188. 2014.
- Z. Luo. Proof irrelevance in type-theoretical semantics. Post-proceedings of Logic and Algorithms in Computational Linguistics 2018 (LACompLing18). Studies in Computational Intelligence (SCI). Springer, 2019.
- Z. Luo. Modern Type Theories: Their Development and Applications. Tsinghua University Press. (In Chinese; to appear)

References (4)

- Z. Luo, Y. Shi and T. Xue. A semantic analysis of adjectival modification in modern type theories. Studies in Logic, 15(2). 2022.
- Z. Luo and S. Soloviev. Dependent event types. Proc of the 24th Workshop on Logic, Language, Information and Computation (WoLLIC'17), LNCS 10388. London, 2017.
- Z. Luo, S. Soloviev and T. Xue. Coercive subtyping: theory and implementation. Information and Computation 223. 2012.
- H. Maclean and Z. Luo. Subtype Universes. Post-proceedings of the 26th Inter. Conf. on Types for Proofs and Programs (TYPES20). Leibniz International Proceedings in Informatics, Vol. 188. 2021.
- P. Martin-Löf. An intuitionistic theory of types: Predicative part. Logic Colloquim'73. 1975.
- P. Martin-Löf. Intuitionistic Type Theory. 1984.
- R. Montague. Formal philosophy. Yale Univ Press, 1974. (Collection edited by R. Thomason)
- C. Retoré. The Montagovian generative lexicon Tyn: A type theoretical framework for natural language semantics. Proceedings of TYPES 2013. 2013.
- B. Pierce et al. Software Foundations series: Logical Foundations (Volume 1) and Programming Language Foundations (Volume 2). Electronic textbooks, 2018.

References (5)

- S. Pustejovsky. *The Generative Lexicon*. MIT. 1995.
- F. Ramsey. The foundations of mathematics. Proceedings of the London Mathematical Society 25(1). 1926.
- A. Ranta. *Type-Theoretical Grammar*. Oxford University Press. 1994.
- ✤ B. Russell. *The Principles of Mathematics*. Routledge, 1903.
- G. Sundholm. Proof theory and meaning. In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol III. 1986.
- ✤ A. White and B. Russell. *Principia Mathematica*. CUP, 2nd edition. 1925.
- T. Xue and Z. Luo. Dot-types and their implementation. LACL'12, LNCS 7351. 2012.
- T. Xue. Coercive subtyping: theory and implementation. PhD thesis, Royal Holloway, Univ of London. 2013.
- T. Xue, Z. Luo and S. Chatzikyriakidis. Propositional Forms of Judgemental Interpretations. Proc. of NLCS18. Oxford, 2018.